{ "id": "1906.09599", "version": "v1", "published": "2019-06-23T15:55:58.000Z", "updated": "2019-06-23T15:55:58.000Z", "title": "$L_p$ functional Busemann-Petty centroid inequality", "authors": [ "Julian Haddad", "Carlos Hugo Jimenez", "Leticia Alves da Silva" ], "comment": "14 pages. Comments are welcome", "categories": [ "math.FA", "math.MG" ], "abstract": "If $K\\subset\\mathbb{R}^n$ is a convex body and $\\Gamma_pK$ is the $p$-centroid body of $K$, the $L_p$ Busemann-Petty centroid inequality states that $\\vol(\\Gamma_pK) \\geq \\vol(K)$, with equality if and only if $K$ is an ellipsoid centered at the origin. In this work, we prove inequalities for a type of functional $r$-mixed volume for $1 \\leq r < n$, and establish as a consequence, a functional version of the $L_p$ Busemann-Petty centroid inequality. \\keywords{Convex body, Moment body, Busemann-Petty centroid} }", "revisions": [ { "version": "v1", "updated": "2019-06-23T15:55:58.000Z" } ], "analyses": { "subjects": [ "39B62" ], "keywords": [ "functional busemann-petty centroid inequality", "busemann-petty centroid inequality states", "centroid body", "moment body", "functional version" ], "note": { "typesetting": "TeX", "pages": 14, "language": "en", "license": "arXiv", "status": "editable" } } }