{ "id": "1906.09521", "version": "v1", "published": "2019-06-22T23:54:28.000Z", "updated": "2019-06-22T23:54:28.000Z", "title": "Mumford-Shah functionals on graphs and their asymptotics", "authors": [ "Marco Caroccia", "Antonin Chambolle", "Dejan SlepĨev" ], "categories": [ "math.AP", "stat.ML" ], "abstract": "We consider adaptations of the Mumford-Shah functional to graphs. These are based on discretizations of nonlocal approximations to the Mumford-Shah functional. Motivated by applications in machine learning we study the random geometric graphs associated to random samples of a measure. We establish the conditions on the graph constructions under which the minimizers of graph Mumford-Shah functionals converge to a minimizer of a continuum Mumford-Shah functional. Furthermore we explicitly identify the limiting functional. Moreover we describe an efficient algorithm for computing the approximate minimizers of the graph Mumford-Shah functional.", "revisions": [ { "version": "v1", "updated": "2019-06-22T23:54:28.000Z" } ], "analyses": { "subjects": [ "49J55", "62G20", "65N12" ], "keywords": [ "asymptotics", "graph mumford-shah functionals converge", "random geometric graphs", "continuum mumford-shah functional", "nonlocal approximations" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }