{ "id": "1906.09424", "version": "v1", "published": "2019-06-22T10:13:52.000Z", "updated": "2019-06-22T10:13:52.000Z", "title": "groups with the same number of centralizers", "authors": [ "K. Khoramshahi", "M. Zarrin" ], "comment": "5 pages", "categories": [ "math.GR" ], "abstract": "For any group $G$, let $nacent(G)$ denote the set of all nonabelian centralizers of $G$. Amiri and Rostami in (Publ. Math. Debrecen 87/3-4 (2015), 429-437) put forward the following question: Let H and G be finite simple groups. Is it true that if $|nacent(H)| = |nacent(G)|$, then $G$ is isomorphic to $H$? In this paper, among other things, we give a negative answer to this question.", "revisions": [ { "version": "v1", "updated": "2019-06-22T10:13:52.000Z" } ], "analyses": { "subjects": [ "D20" ], "keywords": [ "finite simple groups", "nonabelian centralizers", "isomorphic", "negative answer" ], "note": { "typesetting": "TeX", "pages": 5, "language": "en", "license": "arXiv", "status": "editable" } } }