{ "id": "1906.08741", "version": "v1", "published": "2019-06-20T16:36:53.000Z", "updated": "2019-06-20T16:36:53.000Z", "title": "Two supercongruences related to multiple harmonic sums", "authors": [ "Roberto Tauraso" ], "comment": "This is a preliminary version. Comments are welcome", "categories": [ "math.NT", "math.CO" ], "abstract": "Let $p$ be a prime and let $x$ be a $p$-adic integer. We provide two supercongruences for truncated series of the form $$\\sum_{k=1}^{p-1} \\frac{(x)_k}{(1)_k}\\cdot \\frac{1}{k}\\sum_{1\\le j_1\\le\\cdots\\le j_r\\le k}\\frac{1}{j_1^{}\\cdots j_r^{}}\\quad\\mbox{and}\\quad \\sum_{k=1}^{p-1} \\frac{(x)_k(1-x)_k}{(1)_k^2}\\cdot \\frac{1}{k}\\sum_{1\\le j_1\\le\\cdots\\le j_r\\le k}\\frac{1}{j_1^{2}\\cdots j_r^{2}}.$$", "revisions": [ { "version": "v1", "updated": "2019-06-20T16:36:53.000Z" } ], "analyses": { "subjects": [ "11A07", "11B65", "11B68" ], "keywords": [ "multiple harmonic sums", "supercongruences", "adic integer" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }