{ "id": "1906.08536", "version": "v1", "published": "2019-06-20T10:12:53.000Z", "updated": "2019-06-20T10:12:53.000Z", "title": "Zero-cycles with modulus and relative $K$-theory", "authors": [ "Rahul Gupta", "Amalendu Krishna" ], "comment": "44 pages", "categories": [ "math.AG" ], "abstract": "We construct a cycle class map from the higher Chow groups of 0-cycles to the relative $K$-theory of a modulus pair. We show that this induces a pro-isomorphism between the additive higher Chow groups of relative 0-cycles and relative $K$-theory of truncated polynomial rings over a regular semi-local ring, essentially of finite type over a characteristic zero field.", "revisions": [ { "version": "v1", "updated": "2019-06-20T10:12:53.000Z" } ], "analyses": { "subjects": [ "14C25", "19E08", "19E15" ], "keywords": [ "zero-cycles", "cycle class map", "additive higher chow groups", "characteristic zero field", "modulus pair" ], "note": { "typesetting": "TeX", "pages": 44, "language": "en", "license": "arXiv", "status": "editable" } } }