{ "id": "1906.07943", "version": "v1", "published": "2019-06-19T07:02:16.000Z", "updated": "2019-06-19T07:02:16.000Z", "title": "Existence and multiplicity of solutions for fractional Schrödinger-Kirchhoff equations with Trudinger-Moser nonlinearity", "authors": [ "Mingqi Xiang", "Binlin Zhang", "Dušan Repovš" ], "journal": "Nonlinear Anal. 186 (2019), 74-98", "doi": "10.1016/j.na.2018.11.008", "categories": [ "math.AP", "math.OA" ], "abstract": "We study the existence and multiplicity of solutions for a class of fractional Schr\\\"{o}dinger-Kirchhoff type equations with the Trudinger-Moser nonlinearity. More precisely, we consider \\begin{gather*} \\begin{cases} M\\big(\\|u\\|^{N/s}\\big)\\left[(-\\Delta)^s_{N/s}u+V(x)|u|^{\\frac{N}{s}-1}u\\right]= f(x,u) +\\lambda h(x)|u|^{p-2}u\\, &{\\rm in}\\ \\ \\mathbb{R}^N,\\\\ \\|u\\|=\\left(\\iint_{\\mathbb{R}^{2N}}\\frac{|u(x)-u(y)|^{N/s}}{|x-y|^{2N}}dxdy+\\int_{\\mathbb{R}^N}V(x)|u|^{N/s}dx\\right)^{s/N}, \\end{cases}\\end{gather*} where $M:[0,\\infty]\\rightarrow [0,\\infty)$ is a continuous function, $s\\in (0,1)$, $N\\geq2$, $\\lambda>0$ is a parameter, $1