{ "id": "1906.07785", "version": "v1", "published": "2019-06-18T20:12:44.000Z", "updated": "2019-06-18T20:12:44.000Z", "title": "On the behavior of least energy solutions of a fractional $(p,q(p))$-Laplacian problem as p goes to infinity", "authors": [ "Grey Ercole", "Aldo H. S. Medeiros", "Gilberto A. Pereira" ], "comment": "24 pages", "categories": [ "math.AP" ], "abstract": "We study the behavior as $p\\rightarrow\\infty$ of $u_{p},$ a positive least energy solution of the problem \\[ \\left\\{\\begin{array} [c]{lll} \\left[ \\left( -\\Delta_{p}\\right) ^{\\alpha}+\\left( -\\Delta_{q(p)}\\right) ^{\\beta}\\right] u=\\mu_{p}\\left\\Vert u\\right\\Vert _{\\infty}^{p-2} u(x_{u})\\delta_{x_{u}} & \\mathrm{in} & \\Omega\\\\ u=0 & \\mathrm{in} & \\mathbb{R}^{N}\\setminus\\Omega\\\\ \\left\\vert u(x_{u})\\right\\vert =\\left\\Vert u\\right\\Vert _{\\infty}, & & \\end{array} \\right. \\] where $\\Omega\\subset\\mathbb{R}^{N}$ is a bounded, smooth domain, $\\delta_{x_{u}}$ is the Dirac delta distribution supported at $x_{u},$ \\[ \\lim_{p\\rightarrow\\infty}\\frac{q(p)}{p}=Q\\in\\left\\{ \\begin{array} [c]{lll} (0,1) & \\mathrm{if} & 0<\\beta<\\alpha<1\\\\ (1,\\infty) & \\mathrm{if} & 0<\\alpha<\\beta<1 \\end{array} \\right. \\] and \\[ \\lim_{p\\rightarrow\\infty}\\sqrt[p]{\\mu_{p}}>R^{-\\alpha}, \\] with $R$ denoting the inradius of $\\Omega.$", "revisions": [ { "version": "v1", "updated": "2019-06-18T20:12:44.000Z" } ], "analyses": { "subjects": [ "35D40", "35J60", "35R11" ], "keywords": [ "energy solution", "laplacian problem", "fractional", "dirac delta distribution", "smooth domain" ], "note": { "typesetting": "TeX", "pages": 24, "language": "en", "license": "arXiv", "status": "editable" } } }