{ "id": "1906.07609", "version": "v1", "published": "2019-06-18T14:30:58.000Z", "updated": "2019-06-18T14:30:58.000Z", "title": "Entropy and codimension bounds for generic singularities", "authors": [ "Tobias Holck Colding", "William P. Minicozzi II" ], "categories": [ "math.DG", "math.AP", "math.GT", "math.SP" ], "abstract": "We show that all closed $2$-dimensional singularities for higher codimension mean curvature flow that cannot be perturbed away have uniform entropy bounds and lie in a linear subspace of small dimension. The entropy and dimension of the subspace are both $\\leq C\\,(1+\\gamma)$ for some universal constant $C$ and genus $\\gamma$.", "revisions": [ { "version": "v1", "updated": "2019-06-18T14:30:58.000Z" } ], "analyses": { "keywords": [ "generic singularities", "codimension bounds", "higher codimension mean curvature flow", "uniform entropy bounds", "universal constant" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }