{ "id": "1906.07481", "version": "v1", "published": "2019-06-18T10:22:01.000Z", "updated": "2019-06-18T10:22:01.000Z", "title": "Spinorial Representations of Symmetric Groups", "authors": [ "Jyotirmoy Ganguly", "Steven Spallone" ], "categories": [ "math.RT" ], "abstract": "A real representation $\\pi$ of a finite group may be regarded as a homomorphism to an orthogonal group $\\Or(V)$. For symmetric groups $S_n$, alternating groups $A_n$, and products $S_n \\times S_{n'}$ of symmetric groups, we give criteria for whether $\\pi$ lifts to the double cover $\\Pin(V)$ of $\\Or(V)$, in terms of character values. From these criteria, we compute the second Stiefel-Whitney classes of these representations.", "revisions": [ { "version": "v1", "updated": "2019-06-18T10:22:01.000Z" } ], "analyses": { "keywords": [ "symmetric groups", "spinorial representations", "second stiefel-whitney classes", "finite group", "character values" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }