{ "id": "1906.07276", "version": "v1", "published": "2019-06-17T21:18:50.000Z", "updated": "2019-06-17T21:18:50.000Z", "title": "Limit law for the cover time of a random walk on a binary tree", "authors": [ "Amir Dembo", "Jay Rosen", "Ofer Zeitouni" ], "categories": [ "math.PR" ], "abstract": "Let $T_n$ denote the binary tree of depth $n$ augmented by an extra edge connected to its root. Let $C_n$ denote the cover time of $T_n$ by simple random walk. We prove that $\\sqrt{ \\mathcal{C}_{n} 2^{-(n+1) } } - m_n$ converges in distribution as $n\\to \\infty$, where $m_n$ is an explicit constant, and identify the limit.", "revisions": [ { "version": "v1", "updated": "2019-06-17T21:18:50.000Z" } ], "analyses": { "keywords": [ "cover time", "binary tree", "limit law", "simple random walk", "extra edge" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }