{ "id": "1906.06915", "version": "v1", "published": "2019-06-17T09:32:02.000Z", "updated": "2019-06-17T09:32:02.000Z", "title": "On the size-Ramsey number of grid graphs", "authors": [ "Dennis Clemens", "Meysam Miralaei", "Damian Reding", "Mathias Schacht", "Anusch Taraz" ], "categories": [ "math.CO" ], "abstract": "The size-Ramsey number of a graph $F$ is the smallest number of edges in a graph $G$ with the Ramsey property for $F$, that is, with the property that any 2-colouring of the edges of $G$ contains a monochromatic copy of $F$. We prove that the size-Ramsey number of the grid graph on $n\\times n$ vertices is bounded from above by $n^{3+o(1)}$.", "revisions": [ { "version": "v1", "updated": "2019-06-17T09:32:02.000Z" } ], "analyses": { "subjects": [ "05D10" ], "keywords": [ "size-ramsey number", "grid graph", "smallest number", "ramsey property" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }