{ "id": "1906.05997", "version": "v1", "published": "2019-06-14T03:03:29.000Z", "updated": "2019-06-14T03:03:29.000Z", "title": "Maximal functions associated with families of homogeneous curves: $L^p$ bounds for $p\\le 2$", "authors": [ "Shaoming Guo", "Joris Roos", "Andreas Seeger", "Po-Lam Yung" ], "comment": "13 pages", "categories": [ "math.CA" ], "abstract": "Let $M^{(u)}$, $H^{(u)}$ be the maximal operator and Hilbert transform along the parabola $(t, ut^2) $. For $U\\subset(0,\\infty)$ we consider $L^p$ estimates for the maximal functions $\\sup_{u\\in U}|M^{(u)} f|$ and $\\sup_{u\\in U}|H^{(u)} f|$, when $1