{ "id": "1906.05914", "version": "v1", "published": "2019-06-13T20:12:16.000Z", "updated": "2019-06-13T20:12:16.000Z", "title": "Uniqueness of bubbling solutions of mean field equations with non-quantized singularities", "authors": [ "Lina Wu", "Lei Zhang" ], "comment": "36 pages", "categories": [ "math.AP" ], "abstract": "For singular mean field equations defined on a compact Riemann surface, we prove the uniqueness of bubbling solutions if some blowup points coincide with bubbling sources. If the strength of the bubbling sources at blowup points are not multiple of $4\\pi$ we prove that bubbling solutions are unique under non-degeneracy assumptions. This work extends a previous work of Bartolucci, et, al \\cite{bart-4}.", "revisions": [ { "version": "v1", "updated": "2019-06-13T20:12:16.000Z" } ], "analyses": { "subjects": [ "35J75", "58J05" ], "keywords": [ "bubbling solutions", "non-quantized singularities", "uniqueness", "singular mean field equations", "compact riemann surface" ], "note": { "typesetting": "TeX", "pages": 36, "language": "en", "license": "arXiv", "status": "editable" } } }