{ "id": "1906.05639", "version": "v1", "published": "2019-06-13T12:51:54.000Z", "updated": "2019-06-13T12:51:54.000Z", "title": "Nearly all cacti are edge intersection hypergraphs of 3-uniform hypergraphs", "authors": [ "Martin Sonntag", "Hanns-Martin Teichert" ], "comment": "9 pages, 3 figures", "categories": [ "math.CO" ], "abstract": "If ${\\cal H}=(V,{\\cal E})$ is a hypergraph, its edge intersection hypergraph $EI({\\cal H})=(V,{\\cal E}^{EI})$ has the edge set ${\\cal E}^{EI}=\\{e_1 \\cap e_2 \\ |\\ e_1, e_2 \\in {\\cal E} \\ \\wedge \\ e_1 \\neq e_2 \\ \\wedge \\ |e_1 \\cap e_2 |\\geq2\\}$. Using the so-called clique-fusion, we show that nearly all cacti are edge intersection hypergraphs of 3-uniform hypergraphs. In the proof we make use of known characterizations of the trees and the cycles which are edge intersection hypergraphs of 3-uniform hypergraphs (see arXiv:1901.06292).", "revisions": [ { "version": "v1", "updated": "2019-06-13T12:51:54.000Z" } ], "analyses": { "subjects": [ "05C65" ], "keywords": [ "edge intersection hypergraph", "edge set", "clique-fusion" ], "note": { "typesetting": "TeX", "pages": 9, "language": "en", "license": "arXiv", "status": "editable" } } }