{ "id": "1906.05215", "version": "v1", "published": "2019-06-12T15:39:17.000Z", "updated": "2019-06-12T15:39:17.000Z", "title": "m-isometric operators and their local properties", "authors": [ "Z. J. Jablonski", "I. B. Jung", "J. Stochel" ], "comment": "19 pages", "categories": [ "math.FA" ], "abstract": "In this paper we give necessary and sufficient conditions for a bounded linear Hilbert space operator to be an $m$-isometry for an unspecified $m$ written in terms of conditions that are applied to \"one vector at a time\". We provide criteria for orthogonality of generalized eigenvectors of an (a priori unbounded) linear operator $T$ on an inner product space that correspond to distinct eigenvalues of modulus 1. We also discuss a similar question of when Jordan blocks of $T$ corresponding to distinct eigenvalues of modulus 1 are \"orthogonal\".", "revisions": [ { "version": "v1", "updated": "2019-06-12T15:39:17.000Z" } ], "analyses": { "subjects": [ "47B20", "47A75" ], "keywords": [ "local properties", "m-isometric operators", "bounded linear hilbert space operator", "distinct eigenvalues", "inner product space" ], "note": { "typesetting": "TeX", "pages": 19, "language": "en", "license": "arXiv", "status": "editable" } } }