{ "id": "1906.04997", "version": "v1", "published": "2019-06-12T08:25:32.000Z", "updated": "2019-06-12T08:25:32.000Z", "title": "On the volume of unit balls of finite-dimensional Lorentz spaces", "authors": [ "Anna Doležalová", "Jan Vybíral" ], "categories": [ "math.FA" ], "abstract": "We study the volume of unit balls $B^n_{p,q}$ of finite-dimensional Lorentz sequence spaces $\\ell_{p,q}^n.$ We give an iterative formula for ${\\rm vol}(B^n_{p,q})$ for the weak Lebesgue spaces with $q=\\infty$ and explicit formulas for $q=1$ and $q=\\infty.$ We derive asymptotic results for the $n$-th root of ${\\rm vol}(B^n_{p,q})$ and show that $[{\\rm vol}(B^n_{p,q})]^{1/n}\\approx n^{-1/p}$ for all $0