{ "id": "1906.04383", "version": "v1", "published": "2019-06-11T04:10:28.000Z", "updated": "2019-06-11T04:10:28.000Z", "title": "Indecomposable $0$-Hecke modules for extended Schur functions", "authors": [ "Dominic Searles" ], "comment": "11 pages", "categories": [ "math.RT", "math.CO" ], "abstract": "The extended Schur functions form a basis of quasisymmetric functions that contains the Schur functions. We provide a representation-theoretic interpretation of this basis by constructing $0$-Hecke modules whose quasisymmetric characteristics are the extended Schur functions. We further prove these modules are indecomposable.", "revisions": [ { "version": "v1", "updated": "2019-06-11T04:10:28.000Z" } ], "analyses": { "subjects": [ "05E05", "20C08", "05E10" ], "keywords": [ "hecke modules", "extended schur functions form", "indecomposable", "quasisymmetric characteristics", "quasisymmetric functions" ], "note": { "typesetting": "TeX", "pages": 11, "language": "en", "license": "arXiv", "status": "editable" } } }