{ "id": "1906.03640", "version": "v1", "published": "2019-06-09T13:37:49.000Z", "updated": "2019-06-09T13:37:49.000Z", "title": "The Frame of Nuclei of an Alexandroff Space", "authors": [ "Francisco Ávila", "Guram Bezhanishvili", "Patrick Morandi", "Angel Zaldívar" ], "categories": [ "math.GN" ], "abstract": "Let $\\mathcal{O}S$ be the frame of open sets of a topological space $S$, and let $N(\\mathcal{O}S)$ be the frame of nuclei of $\\mathcal{O}S$. For an Alexandroff space $S$, we prove that $N(\\mathcal{O}S)$ is spatial iff the infinite binary tree $\\mathscr T_2$ does not embed isomorphically into $(S, \\le)$, where $\\le$ is the specialization preorder of $S$.", "revisions": [ { "version": "v1", "updated": "2019-06-09T13:37:49.000Z" } ], "analyses": { "subjects": [ "06D22", "06E15", "06A06", "06A05" ], "keywords": [ "alexandroff space", "infinite binary tree", "open sets", "specialization preorder" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }