{ "id": "1906.02531", "version": "v1", "published": "2019-06-06T11:44:17.000Z", "updated": "2019-06-06T11:44:17.000Z", "title": "Approximation by Fourier sums in classes of differentiable functions with high exponents of smoothness", "authors": [ "A. S. Serdyuk", "I. V. Sokolenko" ], "comment": "7 pages", "categories": [ "math.CA" ], "abstract": "We find asymptotic equalities for the exact upper bounds of approximations by Fourier sums of Weyl-Nagy classes $W^r_{\\beta,p}, 1\\le p\\le\\infty,$ for rapidly growing exponents of smoothness $r$ $(r/n\\rightarrow\\infty)$ in the uniform metric. We obtain similar estimates for approximations of the classes $W^r_{\\beta,1}$ in metrics of the spaces $L_p, 1\\le p\\le\\infty$.", "revisions": [ { "version": "v1", "updated": "2019-06-06T11:44:17.000Z" } ], "analyses": { "subjects": [ "42A10" ], "keywords": [ "fourier sums", "high exponents", "differentiable functions", "approximation", "smoothness" ], "note": { "typesetting": "TeX", "pages": 7, "language": "en", "license": "arXiv", "status": "editable" } } }