{ "id": "1906.01812", "version": "v1", "published": "2019-06-05T03:46:27.000Z", "updated": "2019-06-05T03:46:27.000Z", "title": "Turán number of disjoint triangles in 4-partite graphs", "authors": [ "Jie Han", "Yi Zhao" ], "comment": "10 pages", "categories": [ "math.CO" ], "abstract": "Let $k\\ge 2$ and $n_1\\ge n_2\\ge n_3\\ge n_4$ be integers such that $n_4$ is sufficiently larger than $k$. We determine the maximum number of edges of a 4-partite graph with parts of sizes $n_1,\\dots, n_4$ that does not contain $k$ vertex-disjoint triangles. For any $r> t\\ge 3$, we give a conjecture on the maximum number of edges of an $r$-partite graph that does not contain $k$ vertex-disjoint cliques $K_t$. We also determine the largest possible minimum degree among all $r$-partite triangle-free graphs.", "revisions": [ { "version": "v1", "updated": "2019-06-05T03:46:27.000Z" } ], "analyses": { "keywords": [ "turán number", "maximum number", "partite triangle-free graphs", "vertex-disjoint cliques", "partite graph" ], "note": { "typesetting": "TeX", "pages": 10, "language": "en", "license": "arXiv", "status": "editable" } } }