{ "id": "1906.01125", "version": "v1", "published": "2019-06-03T23:42:38.000Z", "updated": "2019-06-03T23:42:38.000Z", "title": "A combinatorial model for the decomposition of multivariate polynomials rings as an $S_n$-module", "authors": [ "Rosa Orellana", "Mike Zabrocki" ], "categories": [ "math.CO" ], "abstract": "We consider the symmetric group $S_n$ module of the polynomial ring with $m$ sets of $n$ commuting variables and $m'$ sets of $n$ anti-commuting variables and calculate that the multiplicity of an irreducible indexed by the partition $\\lambda$ (a partition of $n$) is the number of multiset tableaux of shape $\\lambda$ satisfying certain column and row strict conditions. We also present a finite generating set for the ring of $S_n$ invariant polynomials of this ring.", "revisions": [ { "version": "v1", "updated": "2019-06-03T23:42:38.000Z" } ], "analyses": { "subjects": [ "05E05", "05E10", "20C30" ], "keywords": [ "multivariate polynomials rings", "combinatorial model", "decomposition", "row strict conditions", "symmetric group" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }