{ "id": "1906.00921", "version": "v1", "published": "2019-06-03T16:47:24.000Z", "updated": "2019-06-03T16:47:24.000Z", "title": "Automorphisms of categories of schemes", "authors": [ "Remy van Dobben de Bruyn" ], "comment": "17 pages", "categories": [ "math.AG", "math.CT" ], "abstract": "Given two schemes $S$ and $S'$, we prove that every equivalence between $\\mathbf{Sch}_S$ and $\\mathbf{Sch}_{S'}$ comes from a unique isomorphism between $S$ and $S'$. This eliminates all Noetherian and finite type hypotheses from a result of Mochizuki and fully answers a programme set out by Brandenburg in a series of questions on MathOverflow in 2011.", "revisions": [ { "version": "v1", "updated": "2019-06-03T16:47:24.000Z" } ], "analyses": { "subjects": [ "14A15", "18B99", "14J50" ], "keywords": [ "automorphisms", "categories", "finite type hypotheses", "unique isomorphism", "programme set" ], "note": { "typesetting": "TeX", "pages": 17, "language": "en", "license": "arXiv", "status": "editable" } } }