{ "id": "1906.00475", "version": "v1", "published": "2019-06-02T20:22:43.000Z", "updated": "2019-06-02T20:22:43.000Z", "title": "Laplacians with point interactions -- expected and unexpected spectral properties", "authors": [ "Amru Hussein", "Delio Mugnolo" ], "categories": [ "math.FA" ], "abstract": "We study the one-dimensional Laplace operator with point interactions on the real line identified with two copies of the half-line $[0,\\infty)$. All possible boundary conditions that define generators of $C_0$-semigroups on $L^2\\big([0,\\infty)\\big)\\oplus L^2\\big([0,\\infty)\\big)$ are characterized. Here, the Cayley transform of the boundary conditions plays an important role and using an explicit representation of the Green's functions, it allows us to study invariance properties of semigroups.", "revisions": [ { "version": "v1", "updated": "2019-06-02T20:22:43.000Z" } ], "analyses": { "subjects": [ "47D06", "34B45" ], "keywords": [ "unexpected spectral properties", "point interactions", "laplacians", "study invariance properties", "one-dimensional laplace operator" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }