{ "id": "1905.12364", "version": "v1", "published": "2019-05-29T12:10:49.000Z", "updated": "2019-05-29T12:10:49.000Z", "title": "Separators - a new statistic for permutations", "authors": [ "Eli Bagno", "Estrella Eisenberg", "Shulamit Reches", "Moriah Sigron" ], "categories": [ "math.CO" ], "abstract": "A digit $\\pi_j$ in a permutation $\\pi=[\\pi_1,\\ldots,\\pi_n]\\in S_n$ is defined to be a separator of $\\pi$ if by omitting it from $\\pi$ we get a new $2-$block. In this work we introduce a new statistic, the number of separators, on the symmetric group $S_n$ and calculate its distribution over $S_n$. We also provide some enumerative and asymptotic results regarding this statistic.", "revisions": [ { "version": "v1", "updated": "2019-05-29T12:10:49.000Z" } ], "analyses": { "keywords": [ "permutation", "symmetric group", "distribution" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }