{ "id": "1905.12326", "version": "v1", "published": "2019-05-29T11:04:41.000Z", "updated": "2019-05-29T11:04:41.000Z", "title": "Fluctuations of the Magnetization for Ising Models on Dense Erdős-Rényi Random Graphs", "authors": [ "Zakhar Kabluchko", "Matthias Löwe", "Kristina Schubert" ], "comment": "19 pages", "categories": [ "math.PR" ], "abstract": "We analyze Ising/Curie-Weiss models on the (directed) Erd\\H{o}s-R\\'enyi random graph on $N$ vertices in which every edge is present with probability $p$. These models were introduced by Bovier and Gayrard [J. Stat. Phys., 1993]. We prove a quenched Central Limit Theorem for the magnetization in the high-temperature regime $\\beta<1$ when $p=p(N)$ satisfies $p^3N^2\\to +\\infty$.", "revisions": [ { "version": "v1", "updated": "2019-05-29T11:04:41.000Z" } ], "analyses": { "keywords": [ "dense erdős-rényi random graphs", "ising models", "magnetization", "fluctuations", "analyze ising/curie-weiss models" ], "note": { "typesetting": "TeX", "pages": 19, "language": "en", "license": "arXiv", "status": "editable" } } }