{ "id": "1905.11756", "version": "v1", "published": "2019-05-28T11:49:19.000Z", "updated": "2019-05-28T11:49:19.000Z", "title": "Finite Element Approximation of Elliptic Homogenization Problems in Nondivergence-Form", "authors": [ "Yves Capdeboscq", "Timo Sprekeler", "Endre Süli" ], "comment": "39 pages", "categories": [ "math.NA" ], "abstract": "We use uniform $W^{2,p}$ estimates to obtain corrector results for periodic homogenization problems of the form $A(x/\\varepsilon):D^2 u_{\\varepsilon} = f$ subject to a homogeneous Dirichlet boundary condition. We propose and rigorously analyze a numerical scheme based on finite element approximations for such nondivergence-form homogenization problems. The second part of the paper focuses on the approximation of the corrector and numerical homogenization for the case of nonuniformly oscillating coefficients. Numerical experiments demonstrate the performance of the scheme.", "revisions": [ { "version": "v1", "updated": "2019-05-28T11:49:19.000Z" } ], "analyses": { "subjects": [ "35B27", "35J15", "65N12", "65N30" ], "keywords": [ "finite element approximation", "elliptic homogenization problems", "nondivergence-form homogenization problems", "homogeneous dirichlet boundary condition", "periodic homogenization problems" ], "note": { "typesetting": "TeX", "pages": 39, "language": "en", "license": "arXiv", "status": "editable" } } }