{ "id": "1905.11146", "version": "v1", "published": "2019-05-27T11:43:39.000Z", "updated": "2019-05-27T11:43:39.000Z", "title": "Expansions of the $p$-adic numbers that interprets the ring of integers", "authors": [ "Nathanaƫl Mariaule" ], "categories": [ "math.LO" ], "abstract": "Let $\\widetilde{\\mathbb{Q}_p}$ be the field of $p$-adic numbers in the language of rings. In this paper we consider the theory of $\\widetilde{\\mathbb{Q}_p}$ expanded by two predicates interpreted by multiplicative subgroups $\\alpha^\\mathbb{Z}$ and $\\beta^\\mathbb{Z}$ where $\\alpha, \\beta\\in\\mathbb{N}$ are multiplicatively independent. We show that the theory of this structure interprets Peano arithmetic if $\\alpha$ and $\\beta$ have positive $p$-adic valuation. If either $\\alpha$ or $\\beta$ has zero valuation we show that the theory of $(\\widetilde{\\mathbb{Q}_p}, \\alpha^\\mathbb{Z}, \\beta^\\mathbb{Z})$ does not interpret Peano arithmetic. In that case we also prove that the theory is decidable iff the theory of $(\\widetilde{\\mathbb{Q}_p}, \\alpha^\\mathbb{Z}\\cdot \\beta^\\mathbb{Z})$ is decidable.", "revisions": [ { "version": "v1", "updated": "2019-05-27T11:43:39.000Z" } ], "analyses": { "subjects": [ "03C65", "03C10" ], "keywords": [ "adic numbers", "expansions", "structure interprets peano arithmetic", "interpret peano arithmetic", "zero valuation" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }