{ "id": "1905.11120", "version": "v1", "published": "2019-05-27T11:05:59.000Z", "updated": "2019-05-27T11:05:59.000Z", "title": "On the Schrödinger-Poisson system with indefinite potential and $3$-sublinear nonlinearity", "authors": [ "Sunra J. N. Mosconi", "Shibo Liu" ], "comment": "23 pages, comments welcome!", "categories": [ "math.AP", "math-ph", "math.MP" ], "abstract": "We consider a class of stationary Schr\\\"{o}dinger-Poisson systems with a general nonlinearity $f(u)$ and coercive sign-changing potential $V$ so that the Schr\\\"{o}dinger operator $-\\Delta+V$ is indefinite. Previous results in this framework required $f$ to be strictly $3$-superlinear, thus missing the paramount case of the Gross-Pitaevskii-Poisson system, where $f(t)=|t|^{2}t$; in this paper we fill this gap, obtaining non-trivial solutions when $f$ is not necessarily $3$-superlinear.", "revisions": [ { "version": "v1", "updated": "2019-05-27T11:05:59.000Z" } ], "analyses": { "subjects": [ "35J60", "58E05" ], "keywords": [ "indefinite potential", "sublinear nonlinearity", "schrödinger-poisson system", "general nonlinearity", "superlinear" ], "note": { "typesetting": "TeX", "pages": 23, "language": "en", "license": "arXiv", "status": "editable" } } }