{ "id": "1905.10590", "version": "v1", "published": "2019-05-25T12:53:35.000Z", "updated": "2019-05-25T12:53:35.000Z", "title": "A lower bound for the partition function from Chebyshev's inequality applied to a coin flipping model for the random partition", "authors": [ "Mark Wildon" ], "comment": "4 pages, 1 figure", "categories": [ "math.CO" ], "abstract": "We use a coin flipping model for the random partition and Chebyshev's inequality to prove the lower bound $\\lim \\frac{\\log p(n)}{\\sqrt{n}} \\ge C$ for the number of partitions $p(n)$ of $n$, where $C$ is an explicit constant.", "revisions": [ { "version": "v1", "updated": "2019-05-25T12:53:35.000Z" } ], "analyses": { "subjects": [ "05A17", "60C05" ], "keywords": [ "coin flipping model", "random partition", "chebyshevs inequality", "lower bound", "partition function" ], "note": { "typesetting": "TeX", "pages": 4, "language": "en", "license": "arXiv", "status": "editable" } } }