{ "id": "1905.09469", "version": "v1", "published": "2019-05-23T15:07:04.000Z", "updated": "2019-05-23T15:07:04.000Z", "title": "Rohlin actions of finite groups on the Razak-Jacelon algebra", "authors": [ "Norio Nawata" ], "comment": "18 pages", "categories": [ "math.OA" ], "abstract": "Let $A$ be a simple separable nuclear C$^*$-algebra with a unique tracial state and no unbounded traces, and let $\\alpha$ be a strongly outer action of a finite group $G$ on $A$. In this paper, we show that $\\alpha\\otimes \\mathrm{id}$ on $A\\otimes\\mathcal{W}$ has the Rohlin property, where $\\mathcal{W}$ is the Razak-Jacelon algebra. Combing this result with the recent classification results and our previous result, we see that such actions are unique up to conjugacy.", "revisions": [ { "version": "v1", "updated": "2019-05-23T15:07:04.000Z" } ], "analyses": { "subjects": [ "46L55", "46L35", "46L40" ], "keywords": [ "razak-jacelon algebra", "finite group", "rohlin actions", "unique tracial state", "strongly outer action" ], "note": { "typesetting": "TeX", "pages": 18, "language": "en", "license": "arXiv", "status": "editable" } } }