{ "id": "1905.09057", "version": "v1", "published": "2019-05-22T10:40:08.000Z", "updated": "2019-05-22T10:40:08.000Z", "title": "Harmonic Measure and the Analyst's Traveling Salesman Theorem", "authors": [ "Jonas Azzam" ], "categories": [ "math.CA", "math.AP", "math.MG" ], "abstract": "We study how generalized Jones $\\beta$-numbers relate to harmonic measure. Firstly, we generalize a result of Garnett, Mourgoglou and Tolsa by showing that domains in $\\mathbb{R}^{d+1}$ whose boundaries are lower $d$-content regular admit Corona decompositions for harmonic measure if and only if the square sum $\\beta_{\\partial\\Omega}$ of the generalized Jones $\\beta$-numbers is finite. Using this, we give estimates on the fluctuation of Green's function in a uniform domain in terms of the $\\beta$-numbers. As a corollary, for bounded NTA domains , if $B_{\\Omega}=B(x_{\\Omega},c\\mathrm{diam} \\Omega)$ is so that $2B_{\\Omega}\\subseteq \\Omega$, we obtain that \\[ (\\mathrm{diam} \\partial\\Omega)^{d} + \\int_{\\Omega\\backslash B_{\\Omega}} \\left|\\frac{\\nabla^2 G_{\\Omega}(x_{\\Omega},x)}{G_{\\Omega}(x_{\\Omega},x)}\\right|^{2} \\mathrm{dist}(x,\\Omega^c)^{3} dx \\sim \\mathscr{H}^{d}(\\partial\\Omega). \\] Secondly, we also use $\\beta$-numbers to estimate how much harmonic measure fails to be $A_{\\infty}$-weight for semi-uniform domains with Ahlfors regular boundaries.", "revisions": [ { "version": "v1", "updated": "2019-05-22T10:40:08.000Z" } ], "analyses": { "subjects": [ "31A15", "28A75", "28A78", "31B05", "35J25" ], "keywords": [ "analysts traveling salesman theorem", "harmonic measure", "content regular admit corona decompositions" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }