{ "id": "1905.08009", "version": "v1", "published": "2019-05-20T11:48:28.000Z", "updated": "2019-05-20T11:48:28.000Z", "title": "Operator norm and numerical radius analogues of Cohen's inequality", "authors": [ "Roman Drnovšek" ], "comment": "5 pages", "categories": [ "math.FA" ], "abstract": "Let $D$ be an invertible multiplication operator on $L^2(X, \\mu)$, and let $A$ be a bounded operator on $L^2(X, \\mu)$. In this note we prove that $\\|A\\|^2 \\le \\|D A\\| \\, \\|D^{-1} A\\|$, where $\\|\\cdot\\|$ denotes the operator norm. If, in addition, the operators $A$ and $D$ are positive, we also have $w(A)^2 \\le w(D A) \\, w(D^{-1} A)$, where $w$ denotes the numerical radius.", "revisions": [ { "version": "v1", "updated": "2019-05-20T11:48:28.000Z" } ], "analyses": { "subjects": [ "47A30", "47A12", "47A10" ], "keywords": [ "numerical radius analogues", "operator norm", "cohens inequality", "invertible multiplication operator" ], "note": { "typesetting": "TeX", "pages": 5, "language": "en", "license": "arXiv", "status": "editable" } } }