{ "id": "1905.06827", "version": "v1", "published": "2019-05-16T15:08:28.000Z", "updated": "2019-05-16T15:08:28.000Z", "title": "The Balian-Low theorem for locally compact abelian groups and vector bundles", "authors": [ "Ulrik Enstad" ], "comment": "40 pages", "categories": [ "math.FA", "math.OA" ], "abstract": "Let $\\Lambda$ be a lattice in a second countable, locally compact abelian group $G$ with annihilator $\\Lambda^{\\perp} \\subseteq \\widehat{G}$. We investigate the validity of the following statement: For every $\\eta$ in the Feichtinger algebra $S_0(G)$, the Gabor system $\\{ M_{\\tau} T_{\\lambda} \\eta \\}_{\\lambda \\in \\Lambda, \\tau \\in \\Lambda^{\\perp}}$ is not a frame for $L^2(G)$. When $G = \\mathbb{R}$ and $\\Lambda = \\alpha \\mathbb{Z}$, this statement is a variant of the Balian-Low theorem. Extending a result of R. Balan, we show that whether the statement generalizes to $(G,\\Lambda)$ is equivalent to the nontriviality of a certain vector bundle over the compact space $(G/\\Lambda) \\times (\\widehat{G}/\\Lambda^{\\perp})$. We prove this equivalence using a connection between Gabor frames and Heisenberg modules. More specifically, we show that the Zak transform can be viewed as an isomorphism of certain Hilbert $C^*$-modules. As an application, we prove a new Balian-Low theorem for the group $\\mathbb{R} \\times \\mathbb{Q}_p$, where $\\mathbb{Q}_p$ denotes the $p$-adic numbers.", "revisions": [ { "version": "v1", "updated": "2019-05-16T15:08:28.000Z" } ], "analyses": { "keywords": [ "locally compact abelian group", "balian-low theorem", "vector bundle", "adic numbers", "statement generalizes" ], "note": { "typesetting": "TeX", "pages": 40, "language": "en", "license": "arXiv", "status": "editable" } } }