{ "id": "1905.06483", "version": "v1", "published": "2019-05-16T00:43:09.000Z", "updated": "2019-05-16T00:43:09.000Z", "title": "Occurrence of distances in vector spaces over prime fields", "authors": [ "Thang Pham", "Le Anh Vinh" ], "categories": [ "math.CO", "math.NT" ], "abstract": "Let $\\mathbb{F}_q$ be an arbitrary finite field, and $\\mathcal{E}$ be a set of points in $\\mathbb{F}_q^d$. Let $\\Delta(\\mathcal{E})$ be the set of distances determined by pairs of points in $\\mathcal{E}$. By using the Kloosterman sums, Iosevich and Rudnev proved that if $|\\mathcal{E}|\\ge 4q^{\\frac{d+1}{2}}$, then $\\Delta(\\mathcal{E})=\\mathbb{F}_q$. In general, this result is sharp in odd dimensional spaces over arbitrary finite fields. In this paper, we use the recent point-plane incidence bound due to Rudnev to prove that if $\\mathcal{E}$ has Cartesian product structure in vector spaces over prime fields, then we can break the exponent $(d+1)/2$, and still cover \\textbf{all distances}. We also show that the number of pairs of points in $\\mathcal{E}$ of any given distance is close to its expected value.", "revisions": [ { "version": "v1", "updated": "2019-05-16T00:43:09.000Z" } ], "analyses": { "keywords": [ "prime fields", "vector spaces", "arbitrary finite field", "occurrence", "cartesian product structure" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }