{ "id": "1905.06085", "version": "v1", "published": "2019-05-15T10:59:03.000Z", "updated": "2019-05-15T10:59:03.000Z", "title": "An infinite family of $m$-ovoids of $Q(4,q)$", "authors": [ "Tao Feng", "Ran Tao" ], "comment": "13 pages", "categories": [ "math.CO" ], "abstract": "In this paper, we construct an infinite family of $\\frac{q-1}{2}$-ovoids of the generalized quadrangle $Q(4,q)$, for $q\\equiv 1 (\\text{mod}\\ 4)$ and $q>5$. Together with the examples given by Bamberg et al. and constructions provided by Feng et al., this establishes the existence of $\\frac{q-1}{2}$-ovoids in $Q(4,q)$ for each odd prime power $q$.", "revisions": [ { "version": "v1", "updated": "2019-05-15T10:59:03.000Z" } ], "analyses": { "subjects": [ "51E12", "05B25" ], "keywords": [ "infinite family", "odd prime power", "establishes", "generalized quadrangle" ], "note": { "typesetting": "TeX", "pages": 13, "language": "en", "license": "arXiv", "status": "editable" } } }