{ "id": "1905.05971", "version": "v1", "published": "2019-05-15T06:39:36.000Z", "updated": "2019-05-15T06:39:36.000Z", "title": "Orlicz Modules over Coset Spaces of Compact Subgroups in Locally compact Groups", "authors": [ "Vishvesh Kumar" ], "comment": "10 pages, Comments are welcome", "categories": [ "math.FA" ], "abstract": "Let $H$ be a compact subgroup of a locally compact group $G$ and let $m$ be the normalized $G$-invariant measure on homogeneous space $G/H$ associated with Weil's formula. Let $\\varphi$ be a Young function satisfying $\\Delta_2$-condition. We introduce the notion of left module action of $L^1(G/H, m)$ on the Orlicz spaces $L^\\varphi(G/H, m).$ We also introduce a Banach left $L^1(G/H, m)$-submodule of $L^\\varphi(G/H, m).$", "revisions": [ { "version": "v1", "updated": "2019-05-15T06:39:36.000Z" } ], "analyses": { "keywords": [ "locally compact group", "compact subgroup", "coset spaces", "orlicz modules", "left module action" ], "note": { "typesetting": "TeX", "pages": 10, "language": "en", "license": "arXiv", "status": "editable" } } }