{ "id": "1905.05577", "version": "v1", "published": "2019-05-14T13:12:01.000Z", "updated": "2019-05-14T13:12:01.000Z", "title": "Higher integrability for parabolic systems with Orlicz growth", "authors": [ "Peter Hästö", "Jihoon Ok" ], "categories": [ "math.AP", "math.FA" ], "abstract": "We prove higher integrability of the spatial gradient of weak solutions to parabolic systems with $\\phi$-growth, where $\\varphi=\\varphi(t)$ is a general Orlicz function. The parabolic systems need be neither degenerate nor singular. Our result is a generalized version of the one of J. Kinnunen and J. Lewis [Duke Math. J. 102 (2000), no. 2, 253--271] for the parabolic $p$-Laplace systems.", "revisions": [ { "version": "v1", "updated": "2019-05-14T13:12:01.000Z" } ], "analyses": { "subjects": [ "49N60", "35A15", "35B65", "35J62", "46E35" ], "keywords": [ "parabolic systems", "higher integrability", "orlicz growth", "general orlicz function", "spatial gradient" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }