{ "id": "1905.04744", "version": "v1", "published": "2019-05-12T16:49:24.000Z", "updated": "2019-05-12T16:49:24.000Z", "title": "A note on spanning $K_r$-cycles in random graphs", "authors": [ "Alan Frieze" ], "comment": "4 pages", "categories": [ "math.CO" ], "abstract": "We find a close approximation to the threshold for the existence of a collection of edge disjoint copies of $K_r$ that form a cyclic structure and span all vertices of $G_{n,p}$. We use a recent result of Riordan to give a two line proof of the main re sult.", "revisions": [ { "version": "v1", "updated": "2019-05-12T16:49:24.000Z" } ], "analyses": { "keywords": [ "random graphs", "edge disjoint copies", "cyclic structure", "line proof", "close approximation" ], "note": { "typesetting": "TeX", "pages": 4, "language": "en", "license": "arXiv", "status": "editable" } } }