{ "id": "1905.04630", "version": "v1", "published": "2019-05-12T02:33:46.000Z", "updated": "2019-05-12T02:33:46.000Z", "title": "Finite-dimensional representations of hyper multicurrent and multiloop algebras", "authors": [ "Angelo Bianchi", "Samuel Chamberlin" ], "categories": [ "math.RT" ], "abstract": "We investigate the categories of finite-dimensional representations of multicurrent and multiloop hyperalgebras in positive characteristic, i.e., the hyperalgebras associated to the multicurrent algebras $\\mathfrak g\\otimes\\mathbb{C}[t_1,\\ldots,t_n]$ and to the multiloop algebras $\\mathfrak g\\otimes\\mathbb{C}[t_1^{\\pm1},\\ldots,t_n^{\\pm 1}]$, where $\\mathfrak g$ is any finite-dimensional complex simple Lie algebra. The main results are the construction of the universal finite-dimensional highest-weight modules and a classification of irreducible modules in each category. In the characteristic zero setting we also provide a relationship between them.", "revisions": [ { "version": "v1", "updated": "2019-05-12T02:33:46.000Z" } ], "analyses": { "subjects": [ "17B65", "17B10", "14L17" ], "keywords": [ "finite-dimensional representations", "multiloop algebras", "hyper multicurrent", "finite-dimensional complex simple lie algebra", "universal finite-dimensional highest-weight modules" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }