{ "id": "1905.03191", "version": "v1", "published": "2019-05-08T16:20:20.000Z", "updated": "2019-05-08T16:20:20.000Z", "title": "On the asymptotic Plateau problem for area minimizing surfaces in $\\mathbb{E}(-1,τ)$", "authors": [ "Patrícia Klaser", "Ana Menezes", "Álvaro Ramos" ], "comment": "19 pages, 6 figures", "categories": [ "math.DG" ], "abstract": "We prove some existence and non-existence results for complete area minimizing surfaces in the homogeneous space $\\mathbb{E}(-1,\\tau)$. As one of our main results, we present sufficient conditions for a curve $\\Gamma$ in $\\partial_{\\infty} \\mathbb{E}(-1,\\tau)$ to admit a solution to the asymptotic Plateau problem, in the sense that there exists a complete area minimizing surface in $\\mathbb{E}(-1,\\tau)$ having $\\Gamma$ as its asymptotic boundary.", "revisions": [ { "version": "v1", "updated": "2019-05-08T16:20:20.000Z" } ], "analyses": { "subjects": [ "53A10", "53C42" ], "keywords": [ "asymptotic plateau problem", "complete area minimizing surface", "sufficient conditions", "non-existence results", "asymptotic boundary" ], "note": { "typesetting": "TeX", "pages": 19, "language": "en", "license": "arXiv", "status": "editable" } } }