{ "id": "1905.02864", "version": "v1", "published": "2019-05-08T01:51:25.000Z", "updated": "2019-05-08T01:51:25.000Z", "title": "Möbius Disjointness for Nilsequences Along Short Intervals", "authors": [ "Xiaoguang He", "Zhiren Wang" ], "comment": "35 pages", "categories": [ "math.DS", "math.NT" ], "abstract": "For a nilmanifold $G/\\Gamma$, a $1$-Lipschitz continuous function $F$ and the M\\\"obius sequence $\\mu(n)$, we prove a bound on the decay of the averaged short interval correlation $$\\frac1{HN}\\sum_{n\\leq N}\\Big|\\sum_{h\\leq H} \\mu(n+h)F(g^{n+h}x)\\Big|$$ as $H,N\\to\\infty$. The bound is uniform in $g\\in G$, $x\\in G/\\Gamma$ and $F$.", "revisions": [ { "version": "v1", "updated": "2019-05-08T01:51:25.000Z" } ], "analyses": { "keywords": [ "möbius disjointness", "nilsequences", "averaged short interval correlation", "lipschitz continuous function", "nilmanifold" ], "note": { "typesetting": "TeX", "pages": 35, "language": "en", "license": "arXiv", "status": "editable" } } }