{ "id": "1905.02856", "version": "v1", "published": "2019-05-08T01:04:42.000Z", "updated": "2019-05-08T01:04:42.000Z", "title": "Max-Cut in Degenerate $H$-Free Graphs", "authors": [ "Ray Li", "Nitya Mani" ], "comment": "Comments welcome", "categories": [ "math.CO", "cs.DM" ], "abstract": "We obtain several lower bounds on the $\\textsf{Max-Cut}$ of $d$-degenerate $H$-free graphs. Let $f(m,d,H)$ denote the smallest $\\textsf{Max-Cut}$ of an $H$-free $d$-degenerate graph on $m$ edges. We show that $f(m,d,K_r)\\ge \\left(\\frac{1}{2} + d^{-1+\\Omega(r^{-1})}\\right)m$, improving on and generalizing a recent work of Carlson, Kolla, and Trevisan. We also give bounds on $f(m,d,H)$ when $H$ is a cycle, odd wheel, or a complete bipartite graph with at most 4 vertices on one side. We also show stronger bounds on $f(m,d,K_r)$ assuming a conjecture of Alon, Bollabas, Krivelevich, and Sudakov (2003). We conjecture that $f(m,d,K_r)= \\left( \\frac{1}{2} + \\Theta_r(d^{-1/2}) \\right)m$ for every $r\\ge 3$, and show that this conjecture implies the ABKS conjecture.", "revisions": [ { "version": "v1", "updated": "2019-05-08T01:04:42.000Z" } ], "analyses": { "subjects": [ "05C35" ], "keywords": [ "free graphs", "complete bipartite graph", "stronger bounds", "degenerate graph", "lower bounds" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }