{ "id": "1905.02516", "version": "v1", "published": "2019-05-07T12:58:27.000Z", "updated": "2019-05-07T12:58:27.000Z", "title": "On $L_2$-approximation in Hilbert spaces using function values", "authors": [ "David Krieg", "Mario Ullrich" ], "comment": "9 pages", "categories": [ "math.NA", "math.PR" ], "abstract": "We study $L_2$-approximation of functions from Hilbert spaces $H$ in which function evaluation is a continuous linear functional, using function values as information. Under certain assumptions on $H$, we prove that the $n$-th minimal worst-case error $e_n$ satisfies \\[ e_n \\,\\lesssim\\, a_{n/\\log(n)}, \\] where $a_n$ is the $n$-th minimal worst-case error for algorithms using arbitrary linear information, i.e., the $n$-th approximation number. Our result applies, in particular, to Sobolev spaces with dominating mixed smoothness $H=H^s_{\\rm mix}(\\mathbb{T}^d)$ with $s>1/2$ and we obtain \\[ e_n \\,\\lesssim\\, n^{-s} \\log^{sd}(n). \\] This improves upon previous bounds whenever $d>2s+1$.", "revisions": [ { "version": "v1", "updated": "2019-05-07T12:58:27.000Z" } ], "analyses": { "subjects": [ "41A25", "41A46", "60B20", "41A63", "46E35" ], "keywords": [ "hilbert spaces", "function values", "th minimal worst-case error", "arbitrary linear information", "th approximation number" ], "note": { "typesetting": "TeX", "pages": 9, "language": "en", "license": "arXiv", "status": "editable" } } }