{ "id": "1905.02132", "version": "v1", "published": "2019-05-06T16:39:07.000Z", "updated": "2019-05-06T16:39:07.000Z", "title": "Tanaka formula and local time for a class of interacting branching measure-valued diffusions", "authors": [ "Donald A. Dawson", "Jean Vaillancourt", "Hao Wang" ], "categories": [ "math.PR" ], "abstract": "We construct superprocesses with dependent spatial motion (SDSMs) in Euclidean spaces and show that, even when they start at some unbounded initial positive Radon measure such as Lebesgue measure on $\\R^d$, their local times exist when $d\\le3$. A Tanaka formula is also derived.", "revisions": [ { "version": "v1", "updated": "2019-05-06T16:39:07.000Z" } ], "analyses": { "subjects": [ "60J68", "60J80", "60H15", "60K35", "60K37", "60J68", "60J80", "60H15", "60K35", "60K37", "60J68", "60J80", "60H15", "60K35", "60K37" ], "keywords": [ "interacting branching measure-valued diffusions", "local time", "tanaka formula", "dependent spatial motion", "unbounded initial positive radon measure" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }