{ "id": "1905.01836", "version": "v1", "published": "2019-05-06T06:34:28.000Z", "updated": "2019-05-06T06:34:28.000Z", "title": "On Descartes' rule of signs", "authors": [ "Hassen Cheriha", "Yousra Gati", "Vladimir Petrov Kostov" ], "categories": [ "math.CA" ], "abstract": "A sequence of $d+1$ signs $+$ and $-$ beginning with a $+$ is called a {\\em sign pattern (SP)}. We say that the real polynomial $P:=x^d+\\sum _{j=0}^{d-1}a_jx^j$, $a_j\\neq 0$, defines the SP $\\sigma :=(+$,sgn$(a_{d-1})$, $\\ldots$, sgn$(a_0))$. By Descartes' rule of signs, for the quantity $pos$ of positive (resp. $neg$ of negative) roots of $P$, one has $pos\\leq c$ (resp. $neg\\leq p=d-c$), where $c$ and $p$ are the numbers of sign changes and sign preservations in $\\sigma$; the numbers $c-pos$ and $p-neg$ are even. We say that $P$ realizes the SP $\\sigma$ with the pair $(pos, neg)$. For SPs with $c=2$, we give some sufficient conditions for the (non)realizability of pairs $(pos, neg)$ of the form $(0,d-2k)$, $k=1$, $\\ldots$, $[(d-2)/2]$.", "revisions": [ { "version": "v1", "updated": "2019-05-06T06:34:28.000Z" } ], "analyses": { "keywords": [ "sufficient conditions", "real polynomial", "sign preservations", "sign changes", "realizability" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }