{ "id": "1905.01321", "version": "v1", "published": "2019-05-03T18:00:43.000Z", "updated": "2019-05-03T18:00:43.000Z", "title": "Multiplicity one theorem for $(\\mathrm{GL}_{n+1},\\mathrm{GL}_n)$ over a local field of positive characteristic", "authors": [ "Dor Mezer" ], "comment": "This article draws heavily from arXiv:0707.2363 by other author", "categories": [ "math.RT" ], "abstract": "Let $\\mathbb{F}$ be a non-archimedean local field of positive characteristic different from 2. We consider distributions on $\\mathrm{GL}(n+1,\\mathbb{F})$ which are invariant under the adjoint action of $\\mathrm{GL}(n,\\mathbb{F})$. We prove that any such distribution is invariant with respect to transposition. This implies that the restriction to $\\mathrm{GL}(n,\\mathbb{F})$ of any irreducible smooth representation of $\\mathrm{GL}(n+1,\\mathbb{F})$ is multiplicity free.", "revisions": [ { "version": "v1", "updated": "2019-05-03T18:00:43.000Z" } ], "analyses": { "subjects": [ "22E50", "20G05", "20G25", "46F10" ], "keywords": [ "positive characteristic", "non-archimedean local field", "adjoint action", "multiplicity free", "irreducible smooth representation" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }