{ "id": "1905.00168", "version": "v1", "published": "2019-05-01T03:00:26.000Z", "updated": "2019-05-01T03:00:26.000Z", "title": "On viscosity solutions of space-fractional diffusion equations of Caputo type", "authors": [ "Tokinaga Namba", "Piotr Rybka" ], "categories": [ "math.AP" ], "abstract": "We study a fractional diffusion problem in the divergence form in one space dimension. We define a notion of the viscosity solution. We prove existence of viscosity solutions to the fractional diffusion problem with the Dirichlet boundary values by Perron's method. Their uniqueness follows from a proper maximum principle. We also show a stability result and basic regularity of solutions.", "revisions": [ { "version": "v1", "updated": "2019-05-01T03:00:26.000Z" } ], "analyses": { "keywords": [ "viscosity solution", "space-fractional diffusion equations", "caputo type", "fractional diffusion problem", "dirichlet boundary values" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }