{ "id": "1904.12842", "version": "v1", "published": "2019-04-29T17:49:11.000Z", "updated": "2019-04-29T17:49:11.000Z", "title": "On stability of delay equations with positive and negative coefficients with applications", "authors": [ "Leonid Berezansky", "Elena Braverman" ], "comment": "33 pages, 3 figures", "journal": "Zeitschrift f\\\"{u}r Analysis und ihre Anwendungen, Volume 38, Issue 2, 2019, 157-189", "categories": [ "math.DS" ], "abstract": "We obtain new explicit exponential stability conditions for linear scalar equations with positive and negative delayed terms $$ \\dot{x}(t)+ \\sum_{k=1}^m a_k(t)x(h_k(t))- \\sum_{k=1}^l b_k(t)x(g_k(t))=0 $$ and its modifications, and apply them to investigate local stability of Mackey--Glass type models $$\\dot{x}(t)=r(t)\\left[\\beta\\frac{x(g(t))}{1+x^n(g(t))}-\\gamma x(h(t))\\right]$$ and $$\\dot{x}(t)=r(t)\\left[\\beta\\frac{x(g(t))}{1+x^n(h(t))}-\\gamma x(t)\\right].$$", "revisions": [ { "version": "v1", "updated": "2019-04-29T17:49:11.000Z" } ], "analyses": { "subjects": [ "34K20", "34K06", "92D25" ], "keywords": [ "delay equations", "negative coefficients", "applications", "explicit exponential stability conditions", "mackey-glass type models" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 33, "language": "en", "license": "arXiv", "status": "editable" } } }