{ "id": "1904.12468", "version": "v1", "published": "2019-04-29T06:52:09.000Z", "updated": "2019-04-29T06:52:09.000Z", "title": "BGG category for the quantum Schrödinger algebra", "authors": [ "Genqiang Liu", "Yang Li" ], "comment": "18 pages", "categories": [ "math.RT", "math.QA", "math.RA" ], "abstract": "In this paper, we study the BGG category $\\mathcal{O}$ for the quantum Schr{\\\"o}dinger algebra $U_q(\\mathfrak{s})$, where $q$ is a nonzero complex number which is not a root of unity. If the central charge $\\dot z\\neq 0$, using the module $B_{\\dot z}$ over the quantum Weyl algebra $H_q$, we show that there is an equivalence between the full subcategory $\\mathcal{O}[\\dot z]$ consisting of modules with the central charge $\\dot z$ and the BGG category $\\mathcal{O}^{(\\mathfrak{sl}_2)}$ for the quantum group $U_q(\\mathfrak{sl}_2)$. In the case that $\\dot z=0$, we study the subcategory $\\mathcal{A}$ consisting of finite dimensional $U_q(\\mathfrak{s})$-modules of type $1$ with zero action of $Z$. Motivated by the ideas in \\cite{DLMZ, Mak}, we directly construct an equivalent functor from $\\mathcal{A}$ to the category of finite dimensional representations of an infinite quiver with some quadratic relations. As a corollary, we show that the category of finite dimensional $U_q(\\mathfrak{s})$-modules is wild.", "revisions": [ { "version": "v1", "updated": "2019-04-29T06:52:09.000Z" } ], "analyses": { "keywords": [ "bgg category", "quantum schrödinger algebra", "central charge", "quantum weyl algebra", "finite dimensional representations" ], "note": { "typesetting": "TeX", "pages": 18, "language": "en", "license": "arXiv", "status": "editable" } } }