{ "id": "1904.11903", "version": "v1", "published": "2019-04-26T15:43:57.000Z", "updated": "2019-04-26T15:43:57.000Z", "title": "Stratifying systems through $τ$-tilting theory", "authors": [ "Octavio Mendoza", "Hipolito Treffinger" ], "comment": "20 pages. Commentaries are welcome", "categories": [ "math.RT", "math.RA" ], "abstract": "In this paper we study the stratifying systems, introduced by K. Erdmann and C. Saenz in \\cite{Erdmann2003}, by using the $\\tau$-tilting theory introduced by T. Adachi, O. Iyama and I. Reiten in \\cite{AIR}. We give a constructive proof that every non-zero $\\tau$-rigid module induces at least one stratifying system for any finite dimensional algebra $A$. Later, we show that each stratifying system found this way is a $\\tau$-exceptional sequence as defined by A. B. Buan and R. Marsh in \\cite{BM}.", "revisions": [ { "version": "v1", "updated": "2019-04-26T15:43:57.000Z" } ], "analyses": { "keywords": [ "stratifying system", "tilting theory", "rigid module induces", "finite dimensional algebra", "exceptional sequence" ], "note": { "typesetting": "TeX", "pages": 20, "language": "en", "license": "arXiv", "status": "editable" } } }